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NOTES 
Edited by William Adkins 

Two Proofs of Graves's Theorem 
Kamal Poorrezaei 

1. INTRODUCTION. This note presents two proofs of Graves's theorem on confo- 
cal ellipses. The first proof is based on mechanics and the second on the well-known 
method of drawing an ellipse with two pins and a loop. 

Theorem (Graves). Let ?2 and T be confocal ellipses such that ?2 is interior to 'I, and 
let tangents PA and PB be drawn to 2 from a point P on T' (Figure 1). If ef(AB) denotes 
the length of the shorter arc of 2 determined by A and B, then JPAl + IPBI - f(AB) 
is constant as P varies over 4T. 

P 

A 

B 

fY 

Figure 1. 

If f (AB) denotes the length of the longer arc AB of ?2, then by adding the length of ?2 
to the expression IPAI + IPBI - ?(AB), we see that the quantity IPAI + IPBI + f?(AB) 
is also constant as P varies over T. 

2. PROOF BY MECHANICS. An isolated system with at least one degree of free- 
dom tends to lower its energy. Deviation from a current state is possible if and only if 
the system goes to a state of lower energy. Therefore, if an isolated system is in static 
equilibrium over a continuous range of configurations, its energy must remain constant 
over this range. In order to apply this principle to the situation in the Graves theorem, 
we make a mechanical interpretation of the problem. 

In Figure 2, suppose that ?2 is a solid elliptical plate with a grooved circumference 
and that ' is an elliptical wire, confocal with ?2, on which a small bead P can slide 
freely. Both ?2 and 4T are fixed to a frame and an elastic loop is strung around ?2 and 
joined to 4' at the bead P. 

Using an elastic loop whose length, when unstretched, is less than the perimeter of 
?2 ensures that it is always under tension for any position of the bead P. Being taut, 
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P 

Figure 2. 

the loop leaves the groove of f0 and goes toward P along tangents PA and PB. We also 
stipulate that there be no friction in the system, and thus a tension T is maintained 
along the elastic loop. 

Our goal is to show that the energy of the system remains constant as P moves 
around \4. Since P is acted upon by equal tensions T in the directions of PA and PB, 
the resultant force on P acts along the bisector of ZAPB. 

Now the reflection property of an ellipse implies that the normal to T' at P bisects 
the angle F1 P F2 between its focal radii. Moreover, a lovely theorem of Poncelet [2] 
states that, if tangents PA and PB are drawn to an ellipse from a point outside, then the 
angles the tangents make with the lines joining P to the foci are equal. Thus we have 
(Figure 3) 

ZAPFI = Z F2PB, 

from which it follows that the bisectors of angles APB and FIPF2 are the same line. 
Hence the resultant force on the bead P lies along the normal to 4', that is, the force 
acts perpendicularly to 4'. Thus the system remains in static equilibrium at each posi- 
tion of P, and since the energy of the system is characterized by the length of the 
elastic loop, the length of the loop must remain constant as P moves around 4. 
Thus IPAI + IPBI + f(AB) is constant, where f(AB) signifies the length of the loop 

P 

A 

B 

F, F2 

Figure 3. 
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that is in contact with 0. Subtracting the length of S2, we conclude that the quantity 
IPA + IPBI - ?(AB) is constant as well. 

3. A GEOMETRICAL PROOF. Let P be an arbitrary but fixed point on I1, and let 
Lp denote the value of JPAI + IPBI + f(AB), as in Figure 1. Also, let Ls denote the 
value of ISMI + ISNI + C(MN) for an arbitrary point S outside Q, where SM and SN 
are tangents from S to Q and MN is the longer arc of Q determined by these tangents. 
We show that any curve C through P for which Ls = Lp for all points S of C must be 
an ellipse that is confocal with S2, thus making C identical with TI. Let an n-gon n,, 
be inscribed in Q so that its vertices A1, A2, ..., A, described in the counterclockwise 
orientation are equally spaced around Q, and A1 is at an apogee of Q (Figure 4). Thus 
?(A1A2)= =(A2A3) = 

..= 
e(AnA1). 

Definition. For the convex n-gon Q,, the tangents to ?Q, from a point S outside it are 
the rays enianating from S that constrain the viewing angle of 2,, from S. If SAi and 
SAj are tangents in this sense, then any ray issuing from S and meeting 2,, lies inside 
the convex angle AiSAj. 

Let tangents SAi and SAj be drawn to 2,, from a variable point S in the plane of 
n,,. The vertices Ai and Aj divide the circumference of n,, into a part closer to S and 

a part remote from S. Now let S describe a curve q,, subject to the condition that the 
sum of the lengths of SAi, SAj, and the part of 2,, that is remote from S is constantly 
equal to the value Lp that was determined by the initial point P on IP: 

|SAI SA + ASA ?L + (AmA,,m ) = 
Lp, 

(1) 
m=i 

where An+1 = A I. Figure 4 shows "26 and its related curve kP6. 

N 

S 

A6 A5 

Ai F, F2*A4 

06 
A2 A3 

6 

Figure 4. 

Now let a pin be placed at each vertex Ai of Q2,, and let an unstretchable loop of 
length Lp be strung around them. As shown in Figure 4, keeping the loop taut with a 
pencil at S, the curve i,, is traced out by starting at P and letting S evolve according 
to (1) as it moves around 

Qn,. 
Various pairs of vertices of 2,, take turns as the vertices 
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of contact during this process, but so long as the same vertices Ai and Aj remain the 
vertices of contact, the part of ?, that is remote from S also remains unchanged, and 
therefore the sum ISAil + ISAj I is constant over this segment, implying that I, is a 
piecewise elliptical curve. 

With Ai and Aj as local foci for a section, SAi and SAj are the local radii of S, and 
the reflection property of ellipses implies that the normal to this elliptical segment is 
the bisector of ZAiSAj. What happens at a point where two such elliptical segments of 

I'n meet? Consider Figure 4. The point N, being in line with A6 and A1, is an endpoint 
of two segments. Thus as S passes through N in a counterclockwise direction, the 
vertices of contact (i.e., the foci of the segment) switch from A6 and A4 to A1 and A4. 
Thus on one side of N the normal is the bisector of ZA6NA4 and on the other it is 
the bisector of ZAINA4. At N itself, where the angles A6NA4 and A1NA4 coincide, 
the elliptical segments have a common normal. This means a common tangent, and it 
follows that Iin, is actually a smooth curve. Moreover, we have that the normal to xI, 
at any point S is the bisector of the angle between the tangents from S to ,,. 

As n increases, ?2n approaches 02 in the limit, in which case 'ITn approaches a limit 

'P•. 
Also, in the limit, tangents to 2,n become tangents to 2. Thus the bisector of the 

angle between the tangents to Q from a point S on 'T,, is the normal to 'I at S. Now 
invoking Poncelet's theorem again, we infer that ZAiSF1 = ZF2SAj, in which case 
the bisector of ZAiSAj coincides with the bisector of ZFISF2. We conclude that W1 
has two points Fi and F2 inside it with the property that the normal at each point S 
on 'xP, is the bisector of FISF2. In the following lemma we show that this implies that 
'1% is an ellipse with foci F, and F2. That is, 'P, is an ellipse that is confocal with 2. 
Since '%P, clearly goes through the fixed point P that was chosen on TI, it follows 
that TI = T4. Finally, in the limit, the condition (1) that governs the evolution of XIn 
becomes the alternative sum in Graves's theorem, so the proof is complete. 

Lemma. If xP is a smooth, closed, convex curve in R2 having inside it points F1 and 
F2 such that the normal to 4P at any point S bisects ZLF1SF2, then xP is an ellipse with 

foci F1 and F2. 

Proof We wish to show that ISFi I + ISF21 is constant for S on TI. Suppose to the 
contrary that ISFI I + ISF21 is not constant but attains a maximum value M at some 

A 

B 

F, F2 ? 

TB T`" 
TQ TA 

Figure 5. 
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point A and a minimum value m at some point B, where m < M. Thus for any point Q 
of TI different from A and B, we have 

BF1 + BF2 QF1 + QF2 < AFI + AF2 

and at least one of the inequalities is strict. Now let three ellipses IA, TB, and XIPQ 
with foci F1 and F2 be drawn to pass through A, B, and Q, respectively (Figure 5). 
Since T has the same reflection property as the ellipses, it must be tangent to them at 
the contact points A, B, and Q. However, the shorter arc AB of T runs from a point 
B inside 'IJQ to a point A outside it. Since the curve T is convex, it could not then be 
tangent to JQ. This contradiction leads us to the conclusion that m = M, and thus all 
four curves must coincide. M 
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A Characterization of the Unit Sphere 
Jeongseon Baek, Dong-Soo Kim, and Young Ho Kim 

Let y (s) be a unit speed curve in Rn+1, so I y'(s) I = 1 for all s. Then the curvature K (s) 
of y (s) is the length of the acceleration vector y"(s). If y (s) lies on the unit sphere 

Sn = {x e Rn+l Ix -x = 1}, 

then the curvature of y is everywhere greater than or equal to 1: differentiating the 
relation y (s) . y (s) = 1 twice yields y"(s) - y (s) = -1, and the Schwartz inequality 
gives K (s) = ly"(s)l > 1. Of course, the spheres of radius not exceeding 1 also have 
this curvature property. Thus it is natural to ask what conditions should be added to 
characterize the unit sphere in Rn+1 

We prove the following: 

Theorem. Suppose that M is a closed hypersurface in Rn+1 that satisfies the following 
two conditions: 

(C1) every curve on M has curvature > 1; 

(C2) on M there exists a curve Yo of length r with constant curvature 1. 

Then M is the unit sphere. 

Let U be a given unit vector field normal to the hypersurface M. If p is a point 
of M, Tp(M) denotes the tangent space of M at p and the so-called shape operator 
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